Machine Learning as a Service — What is it? Who are the big players?

March 26, 2021
Hot topics 🔥
AI & ML Insights
Mario Grunitz
Machine Learning as a Service — What is it? Who are the big players?

Machine Learning as a Service is currently worth USD 1 billion and is expected to grow to USD 8.4 billion by 2026. This means that there is no better time than now to upskill and learn about the functionality and purpose of today’s AI applications. WeAreBrain has just launched its new book, Working Machines – An Executive’s Guide to AI and Intelligent Automation which is packed full of information on how to include AI and automation as part of your business strategy. You can find it on Amazon, Google Books, Apple Books and Audible. 

The concept of machine learning essentially aims to make computers learn as humans do. Since its inception close to 50 years ago, this technology has evolved giving us better, more refined ways to find useful patterns in large amounts of data. This is achieved by using algorithms which narrow down and specify common ‘if-then’ programs, resulting in more granular outcomes, widening the scope of its findings, and creating more possible outcomes.

First, what is Machine Learning (ML)?

In simple terms, machine learning is comprised of three steps:

  1. Description: data is collected and then described and presented in charts and reports.
  2. Prediction: patterns are found and predictions are made from the outcomes.
  3. Prescription: users can then decide what to do with the information.

A program is now unbeholden to a set of rules generated by an engineer. Instead, a machine can create a model of defining patterns uniquely to it after receiving a series of training examples. Does this mean we must redefine what is HITL? When all the mechanics are handled by the machine and engineers can simply focus on inputs and outputs, a near unlimited variety of application opportunities are created, from facial recognition to deep learning and (mostly) everything in between.

So why is machine learning getting loads of attention in recent times? Well, for one very simple yet logical reason: we’ve only recently developed the computational power required to process big data. It was one of those ideas which required the technology of the future to be realised, like early dreams of space travel, breathing underwater and unlimited catalogues of cat images at the click of a button — what a time to be alive.

Data is the driver of machine learning. Think of it as its food — the more it devours the bigger, more complex and intuitive it becomes. Many of the world’s leading cloud providers now offer machine learning tools, including Microsoft, Amazon, Google and IBM. The main advantage these companies have over their competitors is their access and ability to generate their own big data, which places them in a completely different league compared to other smaller businesses or startups.

This has led these tech giants to provide machine learning as a service to businesses across the globe, allowing customers to pick and choose from a range of microservices that machine learning has made possible.

If you want to learn more about ML systems, read our blog about rule-based AI vs machine learning.

What is MLaaS?

In a nutshell, Machine Learning as a Service (MLaaS) refers to several services which offer machine learning tools as a component of cloud computing services. MLaaS providers offer developers services that include predictive analytics, data transformations and visualizations, data modelling APIs, facial recognition, natural language processing and machine deep learning algorithms.

Apart from the numerous benefits MLaaS provides, one of the primary attractions of these services is the fact that businesses are able to get started quickly with ML. They don’t have to endure the laborious and tedious software installation processes or provide their own servers as they would with most other cloud computing services. With MLaaS, the provider’s data centres handle the actual computation, so it is ease of convenience at every turn for businesses.

Benefits of using MLaaS

By using AI software and services businesses can improve their product capabilities and offerings, make regular business operations more efficient, interaction with customers easier and use AI prediction capabilities to create more precise business strategies.

With MLaaS, developers get access to sophisticated pre-built models and algorithms which would otherwise take an immense amount of time, skill, and resources to build. This means they can devote more time to building and focusing on the important parts of each project.

Also, getting a team of engineers and developers with the required skills and knowledge to build machine-learning models costs a lot, and there aren’t too many of them to choose from. Ultimately, the ease and the efficacy of MLaaS setups, with the obvious revenue spike they will provide, is a major allure for businesses.

Who are the big players of MLaaS?

The large cloud providers who are simultaneously creating and changing the game of MLaaS are Amazon, Microsoft, Google and IBM. Each provider offers different variations of machine learning services that come with their own unique challenges and rewards, so it’s best to define your business needs to ascertain which provider’s offerings suit you most.

1. AWS Machine Learning

Leaders in the SaaS field, Amazon Web Services are looking to achieve similar status in the MLaaS arena with their AWS Machine Learning solutions which guide users through creating machine learning models without having to learn algorithms themselves. After creating your models with the user-friendly visualization tools and wizards, predictions of your application are created by simple APIs without the user having to generate any code or manage any infrastructure.

Amazon Machine Learning offers a high level of automation which includes the ability to load data from multiple sources, including CSV files, Amazon Redshift, Amazon RDS, and more. Through a numerical and categorical sorting process, the service determines the accurate methods of data preprocessing entirely on its own.

2. Microsoft Azure Machine Learning Studio

Microsoft Azure offers a range of services, but we are focusing on its machine learning offering. Azure offers scalable machine learning for users of all sizes, suitable for AI beginners and pros alike. It offers a host of tools considered more flexible for templatized algorithms.

ML Studio is Azure’s primary MLaaS service that boasts a highly simple browser-based environment with drag-and-drop mechanisms which eliminates the need for coding. ML Studio provides users with a large variety of algorithms with over 100 methods for developers to use. ML Studio also provides users with access to the Cortina Intelligence Gallery, a community-based collection of machine learning.

3. IBM Watson Machine Learning

Watson Machine Learning (WML) is a broad service provider powered by IBM’s Bluemix that includes scoring and training capabilities designed to address the needs of both developers and data scientists. The service handles deployment, operationalization and machine-learning models which can create value for businesses. WML is also compatible with Jupyter notebooks in Python, Scala and R.

One of the main draws to this service is its visual modelling tools that assist users to rapidly identify patterns, gain valuable insights and ultimately enable them to make decisions faster.

4. Google Cloud Machine Learning Engine

Adding to its extensive SaaS range, Google has taken another giant step further into cloud service dominance by creating a sophisticated MLaaS platform. Building on its existing SaaS offerings, Google provides machine learning services for natural language processing and APIs for speech and translation, as well as for video and image recognition.

Google’s Cloud Machine Learning Engine boasts user-friendly ways to build machine learning models for data of any variety and size. Based on TensorFlow, the platform is integrated with all Google services with a priority focus on deep neural network tasks.

How can MLaaS help companies improve their offering?

Most competitive businesses have already started to adopt AI in their operations, gaining a competitive edge as AI makes machine learning capabilities a hell of a lot easier. Through sophisticated cloud service offerings of the leaders in the game (Microsoft, Google, Amazon, IBM, etc.), businesses are now able to have the crucial benefits of machine learning outsourced as a service, without having to hire highly skilled AI developers and the huge price tag they come with.

The microservices which these large cloud services provide allow for easy setup, and the benefits are huge (if used correctly). Machine learning algorithms can enhance business processes and operations, customer interactions and the overall business strategy.

However, simply receiving the information machine learning reveals isn’t going to make your business the next major competitor to Amazon in terms of annual revenue. You need to know how to utilize the data correctly. Tangible reflections on your ROI will depend on a strategy implemented to back your findings.

Machine learning provides data based on many variables, and defining a manageable approach to incorporate this information in the best possible way to prove how valuable this new technology really is to your business.

Mario Grunitz

Mario is a Strategy Lead and Co-founder of WeAreBrain, bringing over 20 years of rich and diverse experience in the technology sector. His passion for creating meaningful change through technology has positioned him as a thought leader and trusted advisor in the tech community, pushing the boundaries of digital innovation and shaping the future of AI.

Working Machines

An executive’s guide to AI and Intelligent Automation. Working Machines takes a look at how the renewed vigour for the development of Artificial Intelligence and Intelligent Automation technology has begun to change how businesses operate.